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Fluctuation, Relaxation, and
Extensivity of Macrovariables
In Nonequilibrium Systems
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The extensive property of a macrovariable is proved for a quantal system
whose Hamiltonian depends on time and for a stochastic system whose
temporal evolution operator depends on time. These generalized situations
are concerned with bulk-contact open systems. The extensive property,
fluctuation, and nonlinear relaxation are investigated explicitly by cal-
culating rigorously generating functions in exactly soluble models such as
the linear stochastic model and linear XY model. The relation between the
nonlinear critical slowing down and linear critical slowing down is also
discussed.
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1. INTRODUCTION

Recently van Kampen™ and Kubo et al.®* developed asymptotic evaluation
methods for investigating the fluctuation and relaxation of a macrovariable.
In particular, Kubo®* proposed the extensivity Ansatz that the distribution
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function of P(X, f) of an extensive macrovariable X at time ¢ has the asymp-
totic form

P(X, t) = Cexp[Q¢(x, t)] ®

for a large system size Q, with x = X/Q. This is a generalization of the
concept of the extensive property of equilibrium statistical thermodynamics
to nonequilibrium problems and it has been found to be very useful in dis-
cussing fluctuation and relaxation of a macrovariable. In Refs. 5-8 Kubo’s
extensivity Ansatz has been proven under general conditions. That is, the
extensivity Ansatz has been proven in Ref. 6 (hereafter referred to as I) to
hold in microscopic stochastic systems and quantum mechanical systems,
under the conditions that the initial distribution py has the form

po = Coexp HV;  HO = f HO(r) dr ©)

and that the relevant macrovariable X and the Hamiltonian 4 are sums of
the forms

X = J X@de and # = f H() de 3)

respectively, where the local operators H#(r), X(r), and #(r) are bounded
in the sense of certain canonical averages.® In I, the Hamiltonian of a
quantal system has been assumed, for simplicity, to change suddenly only at
the initial time and the temporal evolution operator I' of a stochastic system
has been assumed to be time independent. One of our purposes in this
paper is to extend the proof of I to more general cases in which the Hamil-
tonian 4# and temporal evolution operator I' depend on time ¢. Another
purpose is to give some examples in which the extensive property can be
shown explicitly by calculating exactly the generating functions of the relevant
macrovariables introduced in I. In Ref. 7 (hereafter referred to as IT) we have
proved the extensivity of a Markovian macrovariable on the basis of the
master equation, by the use of the mean value theorem in differential calculus,
and obtained the following asymptotic equation for the generating function:

2 o _
% WA 1) + .%’(EX A, t) =0 4
where the master equation is written in the form

a a
EEiP(x’ 1) + =#(x, €52 t)P(x, )=0 )
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with € = 1/Q, and the generating function (3, ¢) takes the form
W\, 1) = f P(X, ) dX = C exp[QU(), 1)] ©)

By the help of the above asymptotic equation (4) of the generating function,
the expressions~® of temporal evolution of the most probable path y(r),
variance o(¢), and other fluctuations around y(¢) have been rederived in II:

(@) = ax(p(0), 1), 6(t) = 2¢,' (1), D)o(t) + cx(3(2), 1) (M
where ¢,(x, t) is the nth moment of the intensive transition probability defined
through

#pn) = > EX oy ®

We have also discussed in II how the system approaches the equilibrium state
in the above framework of the asymptotic evaluation of the distribution
function.

In Section 2, the extensivity Ansatz is proved for a quantal system de-
scribed by the time-dependent Hamiltonian 5#(¢) under conditions similar to
those in I. In Section 3, the extensivity Ansatz is proved for a stochastic
system with a time-dependent temporal evolution operator I'(¢), under the
condition that the system is “normal,” as in I. Some exactly soluble examples
are given in appendices.

2. EXTENSIVE PROPERTY IN QUANTAL SYSTEMS

As in I and II, it is convenient to make use of a generating function
defined by

Trlexp(AX)]p(z) (quantal)
¥, 1) = { z [exp(AX)1P(2) (stochastic or classical) ©)

config

where p(¢) and P(¢) denote the density matrix of a quantal system and the
probability distribution function of a stochastic (or classical) system, re-
spectively. If the generating function is proved to have the extensive property,
ie., YA, 1) = Cyexp[Q(A, 1)] for large €, then the distribution function
P(X, t) of a macrovariable X and the reduced density matrix p(X, ¢), which
are, respectively, defined by®

P(X,t) =2 8X — X)P(R),  p(X, 1) = TrdX — X)p(r)  (10)
are shown® to take the following asymptotic forms (i.e., extensive properties)

P(X, t) or p(X, t) = Cexp[Qd(x, £)] an
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by the inverse transformation

c+i0
P(X, £) or p(X, 1) = zim f e~ W), £) d (12)

c—iw

The function ¢(x, 7) is given by the relation
$(x, 1) = (R0, 1) — dox; (Ao, 1)[OA = x (13)

Now we assume (2) and (3) with a time-dependent local Hamiltonian
H(r, t). Then we can prove the following theorem.

Theorem 1. If the local operators X(r), #°%(r), and #(r, ¢) are bounded
in averages defined later, then we obtain

Jim Q-tlog WA 1) = lm (A, £) = $(A, ¢) (uniformly convergent) (14)
- o Q-

for |A| < A (fixed) and finite ¢. Therefore, ¥'(a, ¢) has the extensive property
and consequently so does p(X, ?).

In order to prove Theorem 1, we consider systems of increasing size L,
(say, L, = 2"a, where n is a large integer and Q, = L,%), as in I. (See Fig. 1.)
Correspondingly, we define ¢,(2, ) by

$a(A 1) = Qytlog Wo, (A, 1) (13)

where ¥, (), #) is the generating function for the system size €,. As in I,
our main task is to prove that this series of functions {i,(A, ¢)} satisfies
Cauchy’s condition on convergence. For this purpose, we divide the volume
Q, into 2¢ subdomains Q,_, and provide each domain with an inside margin
of width b (the range of local operators) as shown in Fig. 2. Each margined
domain of Q,_, is denoted by Q,_; (i.e., the volume Q, = L,%; L, = L, ~
2b). Thus, we redefine ¥ (A, #) by (9) with X, #®, and #(t) defined by
integrals (2) and (3) over the domain €,. For the precise definition of local

{2

Oz,

Q_ - ——
«gj% n+i
71 yrn Y1 ¥

Fig. 1. A series of systems with increasing size L, and an associated series of ¢,.
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Fig. 2. Domains Q; with inside margins of width b; Q, is the shaded region.

operators, see I. Let us call the boundary region shaded in Fig. 2 domain Q,
and the rest we call domain Q,. That is, Q, = Q; + Q,. Then, we separate
each of the operators X, #®, and #(¢) into two parts:

X=X, + X5, Y= HP+HP, A1) =)+ ) (16)

where

X,= | X®dr, #9=| #o@a, HO=| #e,nda (A7)
£y Q;

y

Now, as in I, one of the key points for the proof of the existence of the
thermodynamic limit is to evaluate the difference between the two generating
functions corresponding to Q, + Q, and Q, as follows:

[log ¥, +.0,(A, £) — log ¥, (A, 1)] < (A, 1) (18)
Here, the upper bound e,(}, £) is expressed by €, (A, t) = e + €; + €3, and

e = |log ¥, 10, — log Trlexp(AX,)]p(?)]
= [log Trlexp(AX1)]p(z) — log Tr[exp(AX)]U(#)(exp #P)U*(7)|
&3 = |log Trlexp(AX)IU(2)(exp #P)UH(t) — log ¥y, | (19)

where p(¢) is determined by the Liouville equation
8 t
%0 _ ), ;A= 20)
The formal solution is given by®-*1

o0 = exp,{} f ) 0

=0+ 3 () [t [ ato [ drnr ) - 7 G200) 21

with Kubo’s notation 4*B = [A4, B], or
p(2) = U@)p(0)U*(2) (22
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where

Uu@) = exp+{l.f: H(t") dt’}

0 n pt ty -1
1+ > (;) f dr, [ dty - f dt, ()~ H(t)  (23)
n=1 0 o

0

For the details of the ordered exponential exp, (--), see the paper by Kubo.*?
In particular, we have

Ui(e) = exp_{% J: H() dt’}

=1+ ;::1 (%)"f: dt, :1 dt, ---J:n—l H(ty) - H(t) (24

and

aU() _1

— =300 fo dt'U*(t’)%)(‘ﬂ) U (25)

Equation (25) will be used frequently in this paper. The main difference of
the present treatment from that in I is the use of U(z) given by (23) instead of
exp(—ito) in evaluating the upper bound «,(A, #) in (18). The quantity e, is
rewritten as foliows:

€1 =

J; % lOg TI'{CXP A(Xl + ,U«Xz)}p(t ) dy,. (26)

As shown in I, the following formula holds.

1

1
—d(i eA +xB _ f e(l —SKA+ xB)Bes(A +xB) dS — f es(A + xB)Be(l —s)(4+xB) dS (27)
X
0 0

Tt is convenient to define, as in I, the following operation {(or mapping)
P, associated with an operator P:

P(s,gz)Q =g —$(Py +uPy) Qes(P1 +uPy) (28)
where the operators P; and P, are defined by
P,=| PMar (29)
Q

Then, ¢, is written as

€ =

) " [} 5 T X expCKs + o) 28 GO)
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where

Z,,, = Trexp[AX; + pX;)]p(?) @1
By the use of the property that

Tr[(P(-s,mA4)- B] = Tr[AP,;,,B] (32)
we obtain

|A f du f [ x| < Pleo (33)

where the average {--->® is defined by
XM = Tr Xp,/Tx py; p1 = {explMX; + pX)[Xes,mp(?) (39

and we have assumed that
(KX < (bounded) (3%
In a similar way, we get

e, = |log Tr(exp XX)p(2) — log Tr(exp AXy)U(t)exp LY U(2)]

j dh 2 10g THU'()exp XXV (O} expFY + M’“’}l

-z j dy f ds TH{U(¢)(exp XX)U ()}

x exp SOFD + DY expll — YA + 1P| )

where we have used Eq. (27), and
Z, = Tr UN(t)(exp XX U(?) exp(H#P + pot7) @37

Thus, we obtain

€& =251 f ' d,u.fl ds Tr H'P exp(HP + pHP) exp[AAE, U)X, U1)]
tT &)
with the notation (28). Here we define an average {--->® by
(HPYD = Tr HPpy/Tr p;
. = XDl + pAP] XA, OX: U ()] @)
Then, assuming that |<.9£”“’(r)>(2’| ¢, (finite), we get
€& = d,u. ds' dr (HPEHP| < €€y (40)
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Finally, 5 is evaluated as follows. First note that e; is given by

1
o = | [ du g Trtewp MU0 #OUIO| @)
0
where
t
UL0) = exp. | (1) [ GG + by ar | @)
o
Consequently, we have
€ < €3,1 + €39 (43)
where
1
€31 = j dp Tr(exp AX,) [‘% Uu(t)](exp HNUI)|Z5?
V]
1 ) (44)
o = || duTelexp XU ()exp ) 7 U0 (257
0
and
Z; = Tr(exp XX )U,(t)exp HP)U, () é5)
By the help of formula (25), we obtain
1 &
€sn = f du f d' [ de o, 1@ < 1,9, (46)
0 0 Q

under the condition that [<(r, #')>®| < ¢4, where the average (-->® is
defined by

(Hx, 1))@ = Tr H#(r, 1)ps/Tr ps
ps = U(t")exp ALYV, (1) (exp AX)UL)U, (1)
= exp[U,(t)#PU,(¢")] explAU (YU, (X UL U,'()] (47)

Similarly, €5, is given by

can = f i f “ar [ de o, i@ (48)
where " ’ >
(HF(x, t))Y® = Tr H#(, t)pst/Tr pst (49)
Then we get |[<H(r, t)>®| < c3. Consequently, we obtain
€3,2 < tegQy (50)

Thus we arrive finally at the inequality
EQ(A, t) < (l/\ICI + Cg + 2{03)92 (51)
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Therefore, Egs. (15) and (18) with (51) lead to the following inequality:

X ) = dua DL < 27%(0); c(t) = (Aey + ca + 21c)(2bd/a)
(52
Here we have made use of the facts that Q, = (2bd)LE¢~! + higher terms and
that Q, = L,* = 2"g"% Repeated application of Eq. (52) yields

[fnemd ) = A O] < 27%()  for A < A (fixed)  (53)

and for any positive integer m. This is Cauchy’s condition of the uniform
convergence of the series {¢:,(}, 2)} for ¢ finite (fixed). Hence Theorem 1 holds.
The limit ¢(2, ¢) obtained for the above particular sequence of squares is also
obtained for an arbitrary sequence of squares with edge increasing to infinity
as in the static proof@%1% of the thermodynamic limit of free energy.

3. EXTENSIVE PROPERTY IN STOCHASTIC MODELS

In this section we prove the extensivity of the probability distribution
function P(X, t) of a macrovariable X. The main procedure of the proof is
much the same as for quantal systems. The conditions of the validity for
stochastic models are, however, much simplified compared to those of
quantal systems. That is, the extensivity of a stochastic model holds under the
condition that the microscopic distribution function P({s;}, #) is “normal”
in the sense that

" P(ee, =05y 1) € CoP(e,y 044y 1) g;= %1 (54)

for any configuration, where Cj is a constant independent of the system size
Q. We designate this as P € 4"
As in I, we start from the microscopic master equation

@/at)P({o}, ) = T(@)P({o;}, 1) (55)
with the following temporal evolution operator of single spin flips; I'(¢) =
2T, t) and
L@, )P{o}, t) = —Wioy, )P(..; 05y 1) + Wi—0;, OP(..., =055y £)

(56)

where W(o;, t) denotes the time-dependent transition probability of a spin j.
Now, we assume that P, is given by P, = exp s£® with (2). As in Section 2,
we divide the system Q, into two parts Q; and Q, to confirm Cauchy’s condi-
tion (53). Accordingly, I'(¢) and 2#(¢) are separated, respectively, as

D(r) = Tu(t) + Ta(t)  and () = () + #)  (5T)
Then the following theorem holds with the definition

V) = exp. [ (06) + uTo) d 58)
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Theorem 2 (stochastic). If P(t) = V,(t1")Po € A" (“normal”) for any
separation of I'(z) into two parts [';(¢) and I';(r) and for 0 < ¢’ < ¢ and
0 < p < 1, then we have

lim $o(A, ) = $(A, 1) (uniformly convergent) (59)
Q-

for —A € A < A (A = fixed) and ¢ finite. Therefore, ¥(A, ¢) and P(X, 1)
have the extensive property.

For proof of this theorem, it is sufficient to derive the inequality (18)
with €,(A, 1) = €, + €5 + ¢ = O(LE™?), where

e = {log Z (exp AX)P(2) — log Z (exp XX)P(1) l

€, = | log Z.(exp AX)P(t) — log Z (exp AX)V1(¢) exp AP

(60)

e; = |log z (exp AX) V() exp H#P — log Z (exp AX ) V() exp P

(i) Since X; commutes with X, in the stochastic system, we obtain

(61)

c= | e roe S e a0 + wxe)| = [ ko d

and
KPP = > Xyfexp MXy + #X)IP(0)[D, [exp MX; + pXa)IP(F) (62)
where 3 denotes the sum over all configurations. Clearly, we have
KXopP| € |Xel  (maximum value of X,) (63)

Therefore, we obtain
e < [AX:] = O(LEYH (64)

() Similarly, since ¥ commutes with Y, we obtain

1
= | [ (65)
0

where the average {--->® is defined by

Y@ = (exp XV, (HPOFPIZ5;  Zo = D, (exp XX)Va(1)PO)
(66)°
Note that the following lemma holds.

Lemma 1. If f({o;}) < g({o;}) for any configuration, then V,(t)f
< V(t)g fort 2 0and 0 < p < L.
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This is easily seen, as in I, from the fact that if & > 0, then V,(¢)h > 0.
Note also that |P(0)#P| < || P(0). Then, applying Lemma 1 to (66), we
obtain

PP < 9] andthus & < [ )

quite in the same way as in L
(iii) Finally we evaluate <5 as follows

1
= || dugzlo 3 (exp AX)V0) xp
0

1 t
[ au [ ' 3 (exo OO0 exp 0|23
0 0

(68)
where
Zy = > [exp(XIV(1) exp 9 (69)
and we have used the formula
a ¢ ’ 1 fa r
Al OB R A GIAD (70)

which is essentially equivalent to (25). Since #°® is an effective initial Hamil-
tonian of short-range interaction, we have exp #® € A4 Furthermore, we
assume that

P(t)=V,(t)expHPeN (7
In order to evaluate e; explicitly, we recall the following lemma proved in L.

Lemma 2. If f({o;}) e A, then [Ly(t")f| < Co,(¢)f, where C,, is a
constant dependent on Q., and is given by

Colt) = (€4 + DTl 10 ] = | max Wi ]2 (2)

with a certain constant C,.
Applying this lemma to (68), together with (71) and Lemma 1, we obtain,

z;!

€ <

[ ] @3 xp XDP V) Cos O exp 0

= 1Cq (1) = t(Cy + [T, ()] 73)
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Here it should be noted in applying Lemma 1 to (68) that

Py

Vi 1) = VOV = o, [ (06) + pTohds (09

N
and consequently this has the same property as V,(t) for ¢ > ¢’. Thus,
Lemma 1 is extended to the following:

Lemma 1. If f < g, then V,(¢t, t)f < V,(t, tNgfort = t'.
Thus we arrive finally at the desired inequality

e(M 1) < A Xs] + [P + 1(Co + DT, ()] = O(LE™Y  (75)

Hence Theorem 2 holds, as in Section 2.
Extensions of the above proof to more general stochastic systems such as
a two-spin-flip model are straightforward.

4. CONCLUDING REMARKS

We have proved the extensive property of the reduced density matrix
p(x, t) or the probability distribution function P(x, ¢) of a macrovariable X
under general conditions on the time-dependent Hamiltonian s#(¢) and
temporal evolution operator I'(f). The present results will be useful for
discussing fluctuations in bulk-contact open systems.

The generating function formalism introduced in the course of the proof
is very useful in investigating fluctuation and relaxation of a macrovariable
for concrete examples. (Such applications are demonstrated in the appendices.)
In fact, the most probable path y(¢) of x = X/ and variance o(¢) are given by

y(@) = (0/oMs-0  and  o(t) = (@%H/0A)r-0 (76)

respectively, for a large 2, as shown in 1.

In Appendix A, we discuss the noninteracting temporal evolution with
an arbitrary initial distribution. This is instructive in understanding how the
extensivity arises in nonequilibrium systems. The Lee-Yang circle theorem
on zeros of partition functions in the complex fugacity plane is extended to a
dynamical system. That is, zeros of the generating function W¥'(, ¢) lie on the
unit circle of the complex z = ¢* plane under “ferromagnetic” conditions.
In Appendix B, the extensive property is demonstrated explicitly by solving
rigorously the linear stochastic chain. An enhancement of fluctuations®™® is
shown even in this simple model. In Appendix C, the extensive property and
nonlinear relaxation are discussed in the generalized XY model in one
dimension. It is shown that the nonergodic property appears in this system.
The relation between the nonlinear critical slowing down and the linear
critical slowing down is also discussed.
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APPENDIX A. NONINTERACTING TEMPORAL EVOLUTION
AND ARBITRARY INITIAL DISTRIBUTION

(i) The simplest quantal system showing the extensive property may be
the following noninteracting spin system:

Q e} a
Bams30n X=50 wmi wo-iSer A
=1 =1 i-1

in which the relevant macrovariable is the total magnetization X and the
initial state is sustained by the Zeeman field. This system is trivial, but it may
be instructive for understanding our general theory. The generating function
Y(A, t) is easily shown from (9) to take the form

YA, 1) = exp[Qy(A, £)]  (exact for any ) (A2)

where
$(A, t) = log{cosh A + sinh A tanh % cos(2tJ /h)} (A3)

The reduced density-matrix p(X, ) is given by (11) with the function ¢(x, £)
of the form

é(x, t) = log{a(?) sinh A(x, ¢) + cosh A(x, 1)} — xX(x, 1) (A9

where a(t) = tanh 4 cos(2tJ/A) and A(x, t) is the saddle point determined
from (13). In our simple system, Xx, ) is solved explicitly and it is given by

A(x, £) = tanh~Y[x — a(D)]/[1 — a()x}} (A.5)
From (76), the average value 3(¢) and variance o(2) are, respectively, given by
W) =a(t) and o(t) =1~ a@) (A.6)

These oscillate and do not damp, as it should be, because this system is
nonergodic.

(ii) The second simple example is a stochastic model**® with a non-
interacting temporal evolution operator I’ but with an arbitrary initial
distribution P,. The generating function ¥(2, ¢) of this N-spin system for any
arbitrary extensive macrovariable X = >, f({o}) is given by

YA, 1) = <exp{)t[2: f,.({a,.})]m(a,. - c,.e—af)}>0 %))

where {Q>o = X,= 11 OPo and [-];;, denotes an irreducible expression of
[---], in the sense that it does not contain any redundant part such as o;-o; or
o,® (which should be reduced to 1 or o;). After such reductions, we replace the
variable o; by o;e~* in [f({s,})];sr, Where « is the strength of interaction with
the heat bath (i.e., I'oc; = —wo;). It should be remarked that an enhancement
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of fluctuation®® can occur even in this simplest example for appropriate
macrovariables and initial distributions. For example, the variance o(¢) of
the short-range order E = > 0,0,,, is given by

og(t) = 1 4+ (2e72* — 3e~*) tanh K (A.8)

in one dimension, where Py[ assumed to be given by Py = exp(K > 0,0,,1).
This variance og(t) shows d peak at f = ¢, = (2¢)~* log 3. This is a certain
kind of enhancement of fluctuation.®®
In general, the variance o,,(?) of the magnetization for this noninteracting
I' is given by
ou(t) =1 + (3o — e~ 2% (A9)

where y, = N7' >, <000, while M() = M(0)e *. The generating
function of the magnetization ¥'y(A, ¢) is expressed as

T 1) = (& = e oxplh, ) 3 | )

1 + e~ tanh A
1 — e~*tanh A

) (A.10)
hQA, 1) = 5 log

with ¢ = cosh A and s = sinh A. From this, we obtain (A.9) with the use of
(76). The relaxation of magnetization is given by a single exponential decay
as M(t) = M(0) exp(—ot) and the energy relaxes as E(t) = 2 ;5 616,50 X
exp(—2at).

(iii) Here we consider an extension of the Lee-Yang theorem to dynamical
systems. Zeros of the generating function ¥ (}, ) in (A.10) are easily shown
to lie on the unit circle of the complex fugacity plane z = e* if #? is effec-
tively ferromagnetic, because the ordinary static Lee-Yang theorem"2®
yields

h(\t) =i0 andthus z22=(1 + B — P! (A.11)

with B = e* tan 8. Thus, we have |z| = 1 for real time. The present results
will be extended to more realistic interacting systems.

APPENDIX B. THE EXTENSIVE PROPERTY AND NONLINEAR
RELAXATION IN THE LINEAR STOCHASTIC
MODEL

It is convenient for studying fluctuations rigorously in a stochastic model’
to make use of a state vector representation®*-27 of the form

®
[P = > PledOlfed>;  Hed = H o> ®B.1)

;511
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where

lop; = ((l)) for o; =1 and lo>; = ((1)) for o; = —1 (B.2)

In this representation, the master equation of the stochastic system is ex-
pressed as

ZIP@y = WIP@y o [P@) =eTPOY (B3

It is also convenient to introduce the vacuum state®*27 of the form

|0 = pe?|Pog> = pRZ|1> = p32 D o> (B.4)

(o= k1)
where p,, is a diagonal operator defined by
pea =€ PX[Z,  Z=Tre*, H# =H{s7/}), and W|p,> =0
(B.5)
Then, the average motion of a diagonal operator 4% is given by
A%, = A A2[P()> = OlA2[$(2)>;  [$()) = pea®|P(2)) (B.6)
The state vector [(z)} is the solution of the equation

2y = W@ WE) = st Wal (B

Now the generating function ¥(}, ¢) of this stochastic system for a macro-
variable X is written as

W(A, 1) = <0](exp AX)[%(2)>
= <0| exp(AX) exp[t W (B)] exp(B+# + HD)|0>ZZ;* (B.8)

with Z, = Tr exp #®. This is a basic expression for the generating function
of the macrovariable X with the initial distribution p, = exp #°®.

As an exactly soluble example, we consider here the nonlinear relaxation
of energy in a linear stochastic chain whose Hamiltonian is described by

N
# = —J ofdi,, (B.9)
j=1
The initial effective Hamiltonian 5 is assumed to be #® = — 8,5, That is,

the initial state is in equilibrium at a temperature T, (i.e., B = 1/kpT,) with
the same Hamiltonian 5#. The relevant energy macrovariable is given by
X = 5. The generating function of this system is rewritten® as

WM, p, ) = 0| Bes®|0> x ZZ5'; w=B—P, (B.10)
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Here, W(B) is given by (B.7) with W of the form

1 N
W= 3 z {[1 + yo(o5-1 + ofs o + [Byo(of-1 + of+1) — 1T} (B.11)
=1

where y is defined in (B.13). According to Felderhof,?*-2" the temporal
evolution operator W(B) is diagonalized®® in the form

WP = > WdB; WlB) = —ME &+ £~ 1) — « (B.12)

0=g=<gn
in terms of fermion operators £,%, &,, where
A, =ol —ycosq), 1y = tanhQQJ/kzT) (B.13)

and « denotes the strength of interaction with the heat bath. It should be
remarked that |0> is the vacuum of this representation: £,/0> = 0. On the
other hand, the Hamiltonian 5# becomes®*5—27 off-diagonal in this repre-
sentation as

Hy = —2J[cos P€y" €y + E26 g — 1) +isin (€7 €L, + ££-9] (B.14)
where

=9+ xg, siny, = ofysing — sin? psin 2g)A;%;  sin 2¢ = y (B.15)
or

cos i, = (cos g — pA]? and sin g, = (1 — y?)Y2(sin @)ed;t (B.16)

Thus, the generating function of the energy E = 5 is expressed in the form

YOp0)=2Z5* T] flgdpo) (B.17)
0<gszn
where
f(@, A, g, 1) = {0|e? et Dreust q|0) (B.18)

Therefore, we obtain the following result:

(A, p, 1) = lim N~ log¥' = lim N ‘1{ > Aa A pt) + log(ZZ5 1)}
N-ow - OO

LELES ]

1 cosh BJ
~ 3 || 10w e, A 1) dg + tog( S5 (®.19)
Thus, the generating function takes the following asymptotic form:
Y, p, 1) = Cexp[Ng(A, p, 1)] (B.20)

for large N. This is our desired extensivity. It is easy to obtain an explicit
expression of ¥(A, p, t) or f(gq, A, p, ¢). From (B.18), (B.12), (B.14), the evalua-
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tion of f(g, A, p, t) is similar to the calculation of the free energy in the BCS
pairing theory.®® We introduce the following boson operators:
bt = T, and b, = £¢_, (B.21)

In the subspace spanned by the states |0, 0> and | —q, ¢> = b,7|0, 0>, we
have

et el O)lme
EP b+ EX,6 o =2b,b, = b7 + 1, b = (0 _.1) IO’O>
(B.22)

e b et s 0 —i
i€ Ly + &€ = b7 = (i 0)

It is convenient to transform these Pauli operators into the following new
representation:
b¥ =bicos, + b¥sint,;  (bF) =1 (B.23)

Thus, the operators appearing in (B.18) are given by the following matrices:

exp(uity) = exp(—K,b%) = cosh K, — b7 sinh K, = (C — Cof ics, )

—icSy €+ ¢S
Co = COS ¥y, ¢ = cosh X, (B.24)
8o = sin iy, s = sinh K, K, =2
¢y + 8 0
expltW (B explen) = expled = co 4 st = (0" 0 ) o
q q *

¢, = cosh(zd), s, = —sinh(zA,)
¢ — ¢S ises’
I\ % — [1] o )
exp(A) ( —ises" ¢+ so8
¢ = cosh K, s = sinh K, K, = 2JA

(B.26)

Consequently, the product of the operators appearing in (B.18) is given by

A, B
A 4ot W o (Bl phtt | — a 1 B.2
o= (G ) ®21)
where
D, = (cg ~ s)(c + cos)c' + ¢o8’) + (cg + 5828’y etc. (B.28)
Noting that
{0]e*# et¥ Bt 4|0y = D, (B.29)
we obtain

(g, A, g, t) = e~ Hea(c + 5 cos P )¢’ + 5" cos ) + e Pass’ sin? i} (B.30)
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%0
(B
0

y@ Fig. 3. Relaxation of the energy yz(¢).

Thus, the extensive property is confirmed® explicitly in the linear stochastic
chain. The nonlinear relaxation of the energy is given by

12 —2t)\q 3
a(t) = (A, = (g—‘ﬁ)m — —Jtanh(8n) + 2 j e Masin® fy 4 (B.31)

mJ, ¢+ scos i,

This behaves as shown in Fig. 3. The variance oz(¢) is given by the integral

oxlt) = 2.12[1 — }T J ” {cos Jo + 5 M}z dq] (B.32)

0 ¢ + scosi,

1t is easily found that the variance oz(¢) shows, in general, an enhancement of
fluctuations®=> as shown in Fig. 4. In particular, we have

ye(0) = —Jtanh(ByJ),  yE(0) = yeq = —J tanh(BJ)
O'E(O) = kTOCv(BO), 0'E'(Oo) = Ogyq = kTCv(ﬁ)

where C,(8) denotes the specific heat at the temperature T (= 1/kgf) and it is
given by

(B.33)

C,B) = 212/3[1 -1 f: cos? ¢, dq] - ng’(%) (B.34)

As a special case, we consider a limiting situation in which 7, = 0 and
T = 0. The variance of the energy in this limit is given by

oul(t) = 0oq + J22e 3¢ — 3etb); g = J? (B.35)

~TLT,

Fig. 4. Time dependence of the variance
ox(1), showing an enhancement of fluctua-
— T tions.
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This shows an enhancement of fluctuations before the system approaches
equilibrium. The result (B.35) is consistent with (A.7) for a noninteracting
stochastic system. The detailed analyses of the relaxation (B.31) and fluctua-
tion (B.32) for finite 7, and T will be reported elsewhere.

It seems difficult even in the stochastic chain to obtain in a compact form
the generating function of the magnetization

YA, 1) = 0| exp(AM) exp[t W (B)] exp(B# + H#D)0>ZZs*  (B.36)

because the magnetization cannot be expressed in a bilinear form. of fermion
operators. The most probable path y,(f) = M(¢) is, however, easily given by

M@E)= M@0 or M) = M0)e (B.37)

The variance is also easily obtained. For details of fluctuations in the linear
region, see Refs. 26 and 27.

APPENDIX C. THE EXTENSIVE PROPERTY IN THE
GENERALIZED XY MODEL IN ONE DIMENSION

The generalized XY model®® is described by the Hamiltonian 5 =
H(J,, J,,H), where

H (T, Iy, H)
m N
== z z (Je¥oi0Fey + J70,207. )05 51+ 0F4p1 + #BHZ of (C.1)
k=1j7=1
We assume that the initial Hamiltonian 2#°® is given by

HO = —pH(J.0,J,° H°) (o)

Now we are interested in the two macrovariables X, and X of the total spin
and short-range order:

m. N
X, = z ofy Xa= Z z (o 0Fsi + 06%41)05 41+ 0F4p (C.3)
k=1j=1

The generating function W(A, g, ¢) of the linear combination of these macro-
variables, AX; + uX,, can be calculated exactly by diagonalizing AX; + uXg
in a well-known nonlinear transformation.®® The results thus diagonalized
are expressed in terms of fermion operators »,*, 5, as follows:

X, + pX; = Z wne* g + 1EM-g — D = z wX, (C4)

0<gsn LETT$
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where w, = 2(A + 2u cos g).
H = Z Hy = z{aq("?q+’7q +9im-q— 1) = blnZen,* + hc)}

0<qs=n

a4,

peH + D (=1 (J* + J,¥) cos kg (C.5)
k=1

b, = — Z (=D*(J* — Ji¥) sin kq
E=1

HO= 5 HP;  HP = —pAI3 > UL H— H)  (C6)

O0<g=sn

with the replacements a, — a,° and b, — b,°.
Now the generating function W(A, p, ¢) is defined by

YA, p, 1)
= Trlexp(AX; + pXy) exp(—it#) exp(£®) exp(itof))/Tr exp #® (C.7)

From the expressions (C.4)-(C.6), we obtain the following extensive property:

WA, p, t) = Cexp[Ng(A, p, t)]  for large N (C.9)
where
#s,1) = lim N-1og ¥ = 5[ 1og(f(g, &, i 1)@ cosh &)~} dg
N—+cw 0
(C.9)

with €,° = [(a,)* + (5,")’]"*, and
(@, A i, 1) = Tr, gy exp(itsty) exp(w,X,) exp(— itohy) exp HP (C.10)

As in Appendix B, we introduce a new spin representation:

X

by = -, bt =nIigm.*, Ngl-¢ + 1Em* = by

C.11
Mg g + ﬂiq'?—q = 2bq+bq_ = qu +1 ¢ )

Then it is sufficient to consider the subspace spanned by |0, 0> and | —g, ¢> =
b,%]0, 0> as in Appendix B. By the help of these considerations, the product
of the matrices in (C.10) is calculated to take the form

4, B/

eXPUIE) explanXy) exp(~ 1) exp(#E) = (o

12

Here, we have
A = (co + soca){e®d(c® + 5%¢,%) + e Pus?5y%}
— 2issp8155(c + iscy) sinh w,
D) = (co — soca){e?es®s;% + e %c® + 5%¢,%)}

+ 2issosi8x(c — iscy) sinh w,

(C.13)
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where ¢, = (a,2 + b,2)*? and

¢ = cos(te,), ¢, = COS ¥, = a,fe,
s = sin(te 5, = sin
(rea), oo ’ v (C.14)
¢ = cos #,° = a,’/e’, o = cos(te,%)
Sy = sin ¢,°, 5o = sin(fe,%)

Therefore, f(q, A, p, £) is given by
flg, Lp,t) =2+ 4, + D/
= 2{l + cosh w, cosh ¢,° + (sinh w, sinh ¢,°%) (C.15)
x [cos*(ze,) cos $,° + sin®(te,) cos(2¢, — 4.0}
From (C.8), the nonlinear relaxation of magnetization, for example, is given
by

M) = M©) + j " (cos(2te) — 1} tanh(-zl- eq°) sin g, sin(, — $.°) dg

(C.16)
This is an extension of a previous result.®? It should be noted that
lim M(t) # M., (nonergodic) (C.17)
t— o0

The nonlinear relaxation of the energy E and the variances of £ and M can
be immediately obtained from (C.8).

Now, we discuss the relation between the linear critical slowing down
and nonlinear critical slowing down. In Ref. 31, we defined the nonlinear
relaxation time +$¢-? of the macrovariable X by

7P =f X/ (XDo dt o (T — To)=4™° (C.18)
4]
while the linear relaxation time is defined®2:3® by
9 = [ ROXOo KDt (T = T) (€19
0

In Ref. 31, we asserted the foilowing: (i) A™P < A®D; (ii) in general, A®D #
A® in nonergodic systems, as shown near the critical field H, at T = 0 in the
linear XY model, in which A™? = 1 and AY = 1; and (i) A™? = A® inx
ergodic systems. Quite recently, Rdcz®® discussed these problems on the
basis of the dynamical scaling law.®%37" According to his arguments,
A™D = A® _ B where 8 denotes the critical exponent of the order parameter
X in equilibrium. Qur results (i) and (ii) in Ref. 31 are consistent with the
relation obtained by Rdcz, but the conjecture (iii) holds only when g = 0.
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Our conjecture (iii) has come from the simple argument that in ergodic
systems the differences in the initial (or intermediate) stages of the relaxation
are expected not to affect the divergence of the relaxation, and that anomalous
(or critical) fluctuations will appear dominant in (or very close to) equilibrium,
which will be attained by the final stage of the relaxation. In order to reconcile
our arguments with the relation obtained by Rdcz, we have to make the
following modifications: The boundary between the nonlinear (initial or
intermediate) stage and the linear (or final) stage becomes larger and larger
as the system approaches the critical point T, and the deviation of the order
parameter X from the equilibrium value at the boundary point may be
proportional to (T — T.)%. Thus, the anomaly appearing in the final stage
may be proportional to (I" — T.)’+® from our definition of the nonlinear
relaxation (C.18). Then, if we assume that the contribution from the nonlinear
stage is no more divergent than (T — T,)?7%, we obtain the relation A™? =
A® — B, This may be the simplest interpretation of the scaling derivation by
Récz.
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